PREDICT – Predictive Geometallurgy


PREDICT – Predictive Geometallurgy

Bachmann, K.; Tolosana Delgado, R.; Wopat, K.; Smith, A.; Gutzmer, J.

The long‐term availability of minerals and metals from primary (i.e. geogenic) and secondary (i.e. recycling) resources is not only the key to most economic activity, but also to the realization of important societal developments, such as the transition to a renewables‐based energy system and the rollout of e‐mobility. Due to several factors, the utilization of raw materials from geogenic sources will continue to form an essential part of the raw materials supply for a growing global population. In order to develop a highly skilled work force, to develop novel approaches for raw materials utilization, approaches that deploy resource‐ and energy‐efficient technologies for the delineation, extraction and beneficiation of mineral resources, while at the same time minimizing environmental risks, the Helmholtz International Research School for Predictive Geometallurgy (PREDICT) provides the first‐ever training programme dedicated to predictive geometallurgy and adaptive processing. PREDICT has pooled the interdisciplinary and intersectoral expertise of leading German and South African research institutes, world‐leading mining and metallurgical companies, covering all the links in the raw materials chain from exploration to mineral beneficiation and mine planning. PREDICT not only develops cuttingedge methodologies to take geometallurgical resource potential models to an entire new level but also implements and tests an optimal adaptive processing approach for a beneficiation plant model. In addition, we will combine both models by establishing feedback loops for model reconciliation.
Furthermore, PREDICT will close the loop by implementation of the model results in a simulation‐based mine‐planning block model.

  • Invited lecture (Conferences)
    Helmholtz International Research School Selection Meeting, 29.11.2019, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30094