Impact of Hydrogen-Rich Silicon Nitride Material Properties on Light-Induced Lifetime Degradation in Multicrystalline Silicon


Impact of Hydrogen-Rich Silicon Nitride Material Properties on Light-Induced Lifetime Degradation in Multicrystalline Silicon

Bredemeier, D.; Walter, D. C.; Heller, R.; Schmidt, J.

The root cause of “Light and Elevated Temperature Induced Degradation” (LeTID) of the carrier lifetime in multicrystalline silicon (mc-Si) wafers is investigated by depositing hydrogen-rich silicon nitride (SiN x :H) films of different compositions on boron-doped mc-Si wafers. The extent of LeTID observed in mc-Si after rapid thermal annealing (RTA) shows a positive correlation with the amount of hydrogen introduced from the SiN x :H layers into the bulk. The concentration of in-diffused hydrogen is quantified via measuring the resistivity change due to the formation of boron–hydrogen pairs in boron-doped float-zone silicon wafers processed in parallel to the mc-Si wafers. The measurements clearly show that the in-diffusion of hydrogen into the silicon bulk during RTA depends on both the atomic density of the SiN x :H film as well as the film thickness. Importantly, the impact of SiN x :H film properties on LeTID shows the same qualitative dependence as the hydrogen content in the silicon bulk, providing evidence that hydrogen is involved in the LeTID defect activation process.

Keywords: carrier lifetime; hydrogen; LeTID defects; light-induced lifetime degradation; silicon nitride; ulticrystalline silicon

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-30103