Characterization of the rotenone mouse model of Parkinson’s disease (PD) at early and late disease stage using radioligands for the α4β2 nicotinic acetylcholine receptor ((-)-[18F]Flubatine) and the adenosine A2A receptor ([18F]FESCH and [18F]FLUDA)


Characterization of the rotenone mouse model of Parkinson’s disease (PD) at early and late disease stage using radioligands for the α4β2 nicotinic acetylcholine receptor ((-)-[18F]Flubatine) and the adenosine A2A receptor ([18F]FESCH and [18F]FLUDA)

Toussaint, M.; Kranz, M.; Gündel, D.; Lai, T. H.; Schröder, S.; Dukic-Stefanovic, S.; Deuther-Conrad, W.; Teodoro, R.; Shang, Q.; Patt, M.; Reichmann, H.; Funk, R.; Sabri, O.; Pan-Montojo, F.; Brust, P.

Introduction
Systemic administration of rotenone is able to reproduce the main pathological and behavioral hallmarks of Parkinson’s Disease (PD) in mice. Therefore, those mice are potentially useful for the development of therapies targeting the nicotinic acetylcholine receptor (α4β2nAChR) or the adenosine A2A receptor (A2AR).
Thus, we evaluated the ability of the rotenone model to resemble the decreased availability of α4β2nAChR and the increased availability of A2AR found in the brain of PD patients [1,2,3]. PET/MR imaging was performed to quantify these changes at early and later stages of the disease.
Methods
Two groups of 12-14-months-old male C57BL/6JRj mice (27-36 g) treated for 2 months (n=6) or 4 months (n=7) with rotenone, 5 days/week, 5 mg/kg p.o., and their corresponding control groups (n=7 and n=5, respectively) were investigated. (-)-[18F]Flubatine (6.4±1.9 MBq; Am: 1185±713GBq/μmol) for α4β2nAChR investigation and [18F]FESCH (5.0±1.8 MBq; Am: 116±19 GBq/μmol, EOS) [4] or [18F]FLUDA (5.7±1.2 MBq; Am: 96±10 GBq/μmol, EOS) for A2AR investigation were injected intravenously followed by 60 min dynamic PET scans[4]. The cerebellum was used as a reference tissue. The time-activity curves (TACs) of the SUV ratio (SUVR) of thalamus or striatum over cerebellum were used as measure for specific uptake.
Results/discussion
Specific uptake of (-)-[18F]Flubatine was observed in the thalamus of control and rotenone mice (SUVR60min p.i. ~3.5, all groups included). However, for none of the two treatment groups changes in α4β2nAChR availability compared to the control group were detected (figure 1).
Specific uptake of [18F]FESCH and [18F]FLUDA was observed in the striatum of control and rotenone mice (SUVR10-20 min p.i. ~4.8, all groups included) (figure 2).
PET scans revealed no significant differences in A2AR availability between control group and 2 months rotenone treatment group. However, the SUVR of the 4 months rotenone treatment group were higher compared to the control group (SUVR20-40 min p.i. 3.4 vs. 2.9, respectively), although statistically not significant due to the rather small and highly variable data set.
Altogether, the trend of these results indicates no accordance with clinical findings although a slightly increased availability of A2AR during the course of the disease can be mentioned.
Conclusion
Taking into account the high variability of the dataset, the investigation by PET/MR of the rotenone mouse model after 2 mo. and 4 mo. treatment shows no concordance with the clinical findings regarding α4β2nAChR and A2AR availabilities.
We assume that the rotenone mouse model might not be suitable to assess PD-related changes in the availability of the two targets and thus perhaps not suitable for the investigation of the related targeting-drug.
Acknowledgments
The European Regional Development Fund and Sächsische Aufbaubank are acknowledged for financial support (Project No. 100226753).
References
[1] Vuorimaa et al. Contrast Media Mol Imaging 2017; 6975841. [2] Meyer et al., Arch Gen Psych 2009, 66 : 866-877. [3] Cannon et al., Neurobiol Dis 2009 ; 34 : 279-90. [4] Khanapur et al., J Nucl Med 2017; 58: 466–472.

Keywords: Adenosine 2A receptor; α4β2 nicotinic acetylcholine receptor; rotenone mouse model of Parkinson's disease; positon emission tomography

  • Poster (Online presentation)
    15th European Molecular Imaging Meeting, 24.-27.03.2020, Thessaloniki, Greece

Permalink: https://www.hzdr.de/publications/Publ-30138