Mineral Mapping and Vein Detection in Hyperspectral Drill-Core Scans: Application to Porphyry-Type Mineralization


Mineral Mapping and Vein Detection in Hyperspectral Drill-Core Scans: Application to Porphyry-Type Mineralization

Tusa, L.; Andreani, L.; Khodadadzadeh, M.; Contreras Acosta, I. C.; Ivascanu, P.; Gloaguen, R.; Gutzmer, J.

The rapid mapping and characterization of specific porphyry vein types in geological samples represent a challenge for the mineral exploration and mining industry. In this paper, a methodology to integrate mineralogical and structural data extracted from hyperspectral drill-core scans is proposed. The workflow allows for the identification of vein types based on minerals having significant absorption features in the short-wave infrared. The method not only targets alteration halos of known compositions but also allows for the identification of any vein-like structure. The results consist of vein distribution maps, quantified vein abundances, and their azimuths. Three drill-cores from the Bolcana porphyry system hosting veins of variable density, composition, orientation, and thickness are analysed for this purpose. The results are validated using high-resolution scanning electron microscopy-based mineral mapping techniques. We demonstrate that the use of hyperspectral scanning allows for faster, non-invasive and more efficient drill-core mapping, providing a useful tool for complementing core-logging performed by on-site geologists.

Keywords: hyperspectral imaging; drill-core; mineral mapping; short-wave infrared; porphyry-type veins

Permalink: https://www.hzdr.de/publications/Publ-30241