CFD Modeling of Top-Submerged-Lance Argon injection in liquid metal


CFD Modeling of Top-Submerged-Lance Argon injection in liquid metal

Obiso, D.; Sebastian, K.; Akashi, M.; Eckert, S.; Reuter, M.

The present paper focuses on the application of CFD techniques to investigate the Top-Submerged-Lance (TSL) gas injection in liquid metal.
Previous works of the authors have shown that up- and down-scaling procedures based on the modi-fied Froude number have some shortcomings, as this approach does not take into account the interfa-cial and viscous forces. Indeed surface tension and dynamic viscosity of the smelting slags (σ = 0.4-0.5 N/m, μ = 0.2 Pa·s) are higher than the operating fluids that have been used in literature (water, par-affin oil), which have been used to study TSL injection in down-scaled furnaces.. In order to get closer to real systems, the authors study the TSL injection of Argon in a liquid metal.
An experimental campaign was carried out at the Magnetohydrodynamic Department of Helmholtz-Zentrum Dresden-Rossendorf (HZDR), where the eutectic alloy GaInSn was used as liquid phase. The alloy is liquid at room temperature, and X-Ray imaging is used to picture the multiphase flow in a qua-si-2D vessel (140x140x12 mm).
The aim of the present work is to demonstrate the applicability of CFD techniques to model multi-phase flows involving liquid metals, and validate the model using the data produced at HZDR. The commercial software ANSYS Fluent® was used together with the Volume of Fluid model to directly resolve the gas-liquid interphase. Some features of the flow, such as the void fraction distribution and bubble detachment frequency are tracked with CFD and compared to the experimental data. The ef-fect on the hydrodynamics of different operating conditions, such as the lance immersion depth is investigated.
The authors are currently extending the work to new geometries and operating conditions, in order to get a broader amount of data, useful for the validation of models and for the further understanding of the TSL injection.

Keywords: two phase flow; top submerged lance; liquid metal

Involved research facilities

Related publications

  • Lecture (Conference)
    10th Copper International Conference (COPPER 2019), 18.-21.08.2019, Vancouver, Canada

Permalink: https://www.hzdr.de/publications/Publ-30436