Complex quantum dots in III-As nanowires


Complex quantum dots in III-As nanowires

Tauchnitz, T.; Balaghi, L.; Hübner, R.; Chatzarakis, N.; Pelekanos, N. T.; Bussone, G.; Grifone, R.; Grenzer, J.; Schneider, H.; Helm, M.; Dimakis, E.

Single quantum dots in the core of freestanding semiconductor nanowires is a promising scheme for the realization of on-demand sources of single photons or entangled photon pairs in quantum technology systems. Here, we demonstrate that complex quantum-dots can be grown in self-catalyzed III-As nanowires and their emission can be tuned in a wide range of wavelengths.
The quantum dots are formed inside self-catalyzed GaAs nanowires (grown on Si substrates by molecular beam epitaxy) by first growing an axial AlxGa1-xAs/GaAs/AlxGa1-xAs heterostructure in pulsed mode . The AlxGa1-xAs segments are grown as digital alloys with a precise control of the composition, the thickness, and the crystal structure (absence of stacking faults). Then, the nanowires are overgrown all-around with an InxAl1-xAs layer in a core/shell fashion. Owing to the large lattice-mismatch with the shell, the thin core develops tensile hydrostatic strain and the emission from the dot is strongly red-shifted. Furthermore, distinct exciton-biexciton features are identified in photoluminescence measurements.

Keywords: self-catalyzed; strain engineering; bandgap tuning

Involved research facilities

Related publications

  • Lecture (Conference)
    Nanowire Week 2019, 23.09.2019, Pisa, Italy

Permalink: https://www.hzdr.de/publications/Publ-30454