Atomic Scale Analysis of Ultra-Thin InxGa1-xN/GaN Quantum Wells by High Resolution HR(S)TEM


Atomic Scale Analysis of Ultra-Thin InxGa1-xN/GaN Quantum Wells by High Resolution HR(S)TEM

Vasileiadis, I. G.; Lymperakis, L.; Liebscher, C. H.; Dimakis, E.; Hübner, R.; Adikimenakis, A.; Georgakilas, A.; Karakostas, T.; Komninou, P.; Dimitrakopulos, G. P.

Short period superlattices (SPSs) of InxGa1-xN/GaN quantum wells (QW) with a thickness of one up to just a few atomic monolayers (MLs) are promising for bandgap and strain engineering towards advanced optoelectronics devices and novel topological insulators.

We have considered 5-period InxGa1-xN/GaN SPSs deposited by plasma-assisted molecular beam epitaxy (PAMBE) on c-GaN/Al2O3 templates under metal-rich conditions. The nominal QW thickness was 1 ML and the GaN barriers were 10 nm thick. The SPSs were grown at various growth temperatures keeping the same temperature for both QWs and GaN barriers.

Cs-corrected high resolution transmission electron microscopy (HRTEM), and probe-corrected scanning TEM (HRSTEM) observations were carried out in order to elucidate the effect of growth temperature on the structural quality, composition, and strain state of the QWs. Cross-sectional observations were conducted along the <11-20> and <1-100> projection directions. Atomic positions were identified on images using a peak finding algorithm and were employed in order to extract nanoscale strain maps. Furthermore, quantification of the Z-contrast of atomic columns on the HRSTEM observations was employed for the direct determination of the indium content in QWs. The thin foil relaxation phenomenon was considered in the analysis.

Composition dependent strain graphs were calculated theoretically in order to associate the experimental strain measurements to the indium content. For that purpose, a series of energetically relaxed InxGa1-xN/GaN supercells were constructed taking into account several indium contents, and the QW thickness limited to 1 ML. For the relaxation of the supercells a ternary empirical interatomic potential was utilized using molecular dynamics simulations.

Involved research facilities

Related publications

  • Lecture (Conference)
    XXXIV Panhellenic Conference on Solid State Physics and Materials Science, 11.09.2019, Patras, Greece

Permalink: https://www.hzdr.de/publications/Publ-30462