Field driven recovery of the collective spin dynamics of the chiral soliton lattice


Field driven recovery of the collective spin dynamics of the chiral soliton lattice

Trindade Goncalves, F. J.; Shimamoto, Y.; Sogo, T.; Paterson, G. W.; Kousaka, Y.; Togawa, Y.

We investigate the magnetic field dependence of the spin excitation spectra of the chiral soliton lattice (CSL) in the helimagnet CrNb₃S₆, by means of microwave resonance spectroscopy. The CSL is a prototype of a noncollinear spin system that forms periodically over a macroscopic length scale. Following the field initialisation of the CSL, we found three collective resonance modes over an exceptionally wide frequency range. With further reducing the magnetic field towards 0 T, the spectral weight of these collective modes was disrupted by the emergence of additional resonances whose Kittel-like field dependence was linked to coexisting field polarised magnetic domains. The collective behaviour at a macroscopic level was only recovered upon reaching the helical magnetic state at 0 T. The magnetic history of this non collinear spin system can be utilized to control microwave absorption, with potential use in magnon driven devices.

Involved research facilities

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-30491