Hybrid LWFA-PWFA staging; from concept to proof-of-principle experiments


Hybrid LWFA-PWFA staging; from concept to proof-of-principle experiments

Irman, A.; Bussmann, M.; Chang, Y.-Y.; Corde, S.; Couperus Cabadağ, J. P.; Debus, A.; Ding, H.; Döpp, A.; Heinemann, T.; Hidding, B.; Gilljohann, M. F.; Götzfried, J.; Karsch, S.; Kononenko, O.; Kurz, T.; Köhler, A.; Martinez De La Ossa, A.; Pausch, R.; Raj, G.; Schindler, S.; Schöbel, S.; Zarini, O.; Assmann, R. W.; Schramm, U.

Beam-driven plasma wakefield accelerators (PWFAs) offer a unique regime for the generation and acceleration of high-quality electron beams to multi-GeV energies. Here we present an innovative hybrid staging approach, deploying electron beams generated in a laser-driven wakefield accelerator(LWFA) as drivers for a PWFA, integrated in a particularly compact setup. This scenario exploits the capability of LWFAs to deliver shortest, high peak-current electron bunches [1] with the prospects for high-quality witness beam generation in PWFAs [2]. The feasibility of the concept is presented through exemplary particle-in-cell simulations, before describing experimental results from extensive campaigns performed at high-power laser facilities; ATLAS (LMU, Munich), SALLE-JAUNE (LOA, Paris) and DRACO (HZDR, Dresden). Using few-cycle optical probing we captured clear images of beam-driven plasma waves in a dedicated plasma stage, allowing us to identify a non-linear plasma-wave excitation regime. Trailing the plasma waves, the impact of ion motion to the transverse modulation of the plasma density was observed over many picoseconds [3]. Furthermore, we demonstrate for the first time the acceleration of distinct witness beams in such LWFA-driven PWFA (LPWFA) setup, showcasing an accelerating gradient on the order of 100 GV/m. These milestones pave the way towards compact sources of energetic ultra-high brightness electron beams as well as a miniature model for large scale PWFA facilities.

Keywords: laser wakefield acceleration; plasma wakefield acceleration

Involved research facilities

Related publications

  • Open Access Logo Lecture (Conference)
    European Advanced Accelerator Concept (EAAC), 20.09.2019, ELBA, Italia

Permalink: https://www.hzdr.de/publications/Publ-30492