Erbium-ion implantation of single- and nano-crystalline ZnO


Erbium-ion implantation of single- and nano-crystalline ZnO

Cajzl, J.; Nekvindova, P.; Jeníčková, K.; Jagerová, A.; Malinský, P.; Remeš, Z.; Neykova, N.; Chang, Y.-Y.; Oswald, J.; Kentsch, U.; Macková, A.

This paper reports on the results of Er+ ion implantation into various ZnO structures - standard single crystal c-plane (0001) ZnO, nanostructured thin films and nanorods. Er+ ions were implanted using an ion implantation energy of 400 keV and implantation fluences in the range of 5×1014 to 5×1015 ions/cm2. Er concentration depth profiles and the degree of crystal damage were measured using Rutherford backscattering spectrometry (RBS) and RBS/channelling (RBS/C). Additionally, Raman spectroscopy was used to analyse structural modifications of the prepared samples. The main focus was placed on the luminescence properties of various ZnO structures. The results showed that the characteristic bands of ZnO, i.e. near-band-edge (NBE) luminescence and deep-level emission (DLE) - that can be influenced by the excitation wavelength - appeared in the spectra of single crystals and nanorods. The characteristic luminescence bands of erbium ions in the NIR region appeared in ZnO single-crystal samples and nano-crystalline films.

Keywords: ZnO; nanocrystalline thin films; nanorods; erbium; ion implantation; luminescence

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-30496