Integration of 1D and 2D Materials into Functional Structures and Devices


Integration of 1D and 2D Materials into Functional Structures and Devices

Georgiev, Y.

In this talk I will make a brief overview of our activities for integration of different 1D and 2D materials into functional structures and devices.

I will first present the work on fabrication, processing and application of group IV semiconductor nanowires (NWs). These include top-down fabricated Si, SiGe and Ge NWs as well as bottom-up grown Si, Ge1-xSnx with x = 0.07-0.1 and GaAs/In0.45Ga0.55As NWs. I will also consider the innovative devices that we are targeting: junctionless nanowire transistors (JNTs), reconfigurable field effect transistors (RFETs) and band-to-band tunnel FETs (TFETs).

I will next discuss our activities for fabrication and characterisation of FETs based on 2D heterostructures. As examples I will show FETs fabricated on hBN-encapsulated InSe, a material with attractive properties but very unstable in ambient atmosphere, as well as TFETs fabricated on hBN/MoS2/WSe2/graphene heterostructures.

Finally, I will pay some attention to our work on using DNA origami templates for the fabrication of functional structures with the outlook to the application of DNA origami for self-assembly of electronic circuits. In particular, I will show fabrication of conducting metallic NWs using templates of DNA nanotubes, nanosheets and nanomoulds as well as incorporation into them of molecules and semiconducting nanoparticles for enhanced electronic functionality.

Keywords: 1D materials; 2D materials; semiconductor nanowires; DNA origami; transition metal dichalcogenides; top-down nanofabrication; bottom-up nanofabrication; junctionless nanowire transistors; reconfigurable field effect transistors; band-to-band tunnel field effect transistors

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    Meeting at the Advanced Microelectronic Centre Aachen (AMICA), AMO gGmbH, 02.-03.12.2019, Aachen, Germany

Permalink: https://www.hzdr.de/publications/Publ-30499