High resolution materials modification with low fluence Helium Ion Microscopy


High resolution materials modification with low fluence Helium Ion Microscopy

Hlawacek, G.

Helium Ion Microscopy (HIM) is best known for its high resolution imaging capabilities of both
conductive as well as insulating samples. However, since the introduction of Ne as a source gas for the
gas field ion source (GFIS) an increasing number of nano-fabrication applications are realized. While
the use of Neon as an imaging gas results in a somewhat lower lateral resolution (1.8 nm for 25 keV Ne +
compared to 0.5 nm for 30 keV He + ) the user usually benefits from the much higher cross section for
nuclear stopping. The latter results in a larger number of sputtered atoms, vacancies, interstitials and
chemical bonds broken directly by small impact parameter collisions.
After a brief introduction of the technique I will present results obtained using direct write milling, low
fluence ion beam irradiation and ion beam based mixing. In all cases the electronic, optical or magnetic
properties of the target material will be altered at the nano-scale in a controlled way to achieve new
functionality. The examples comprise
∙ Irradiation of 2D materials including a discussion on the achievable resolution
∙ The fabrication of a lateral spin valve and other magnetic structures using low fluence focused ion
beam irradiation
∙ Irradiation of Si nanostructures at elevated temperatures to avoid amorphization
∙ Irradiation of SiC with very low fluencies
For many of the presented examples the critical length scale of the nanostructure is smaller or in the
range of collision cascade. This size regime can not easily be accessed with traditional broad beam based
ion irradiation and holds many promises but also challenges that need to be overcome to enable new
device concepts and new functional materials on the nano-scale. The use of in-situ instrumentation to
characterize and influence the irradiated material during the irradiation is a key element for the above
examples.
This work is supported by the European Union’s H-2020 research project ‘IONS4SET’ under Grant
Agreement No. 688072.

Keywords: HIM; modification

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    1st Sino-German Symposium on "Defect Engineering in SiC Device Manufacturing - Atomistic Simulations, Characterization and Processing" DESiC 2019, 12.11.2019, Peking, China

Permalink: https://www.hzdr.de/publications/Publ-30534