THz nonlinear optics in graphene ribbons


THz nonlinear optics in graphene ribbons

Jadidi, M. M.; Daniels, K. M.; Myers-Ward, R.; Gaskill, D. K.; König-Otto, J.; Winnerl, S.; Sushkov, A.; Drew, H. D.; Murphy, T. E.; Mittendorff, M.

Graphene plasmonics is an emerging field due the unique combination of spectral tunability, strong plasmonic resonance and low losses. Here we study the nonlinear optical properties of graphene bilayer ribbons, featuring a plasmonic resonance at 3.9 THz, in time resolved experiments. A redshift of the plasmonic resonance is observed upon excitation with picosecond THz pulses. The unconventional nonlinear effect is explained by the optical response of hot carriers. Already at fairly low fluences in the µJ/cm2 range strong changes in transmission in the 10 % range can be induced. This strong response, together with the fast recovery determined by the electron cooling time (∼10 ps), makes the system promising for optical switching applications.

Keywords: graphene; plasmonics; nonlinear optics

Involved research facilities

Related publications

  • Lecture (Conference)
    DPG-Frühjahrstagung, 31.03.-05.04.2019, Regensburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30564