Preclinical incorporation dosimetry of [18F]FACH - a novel 18F-labeled MCT1/MCT4 lactate transporter inhibitor for imaging cancer metabolism with PET


Preclinical incorporation dosimetry of [18F]FACH - a novel 18F-labeled MCT1/MCT4 lactate transporter inhibitor for imaging cancer metabolism with PET

Sattler, B.; Kranz, M.; Wenzel, B.; Thachaantara Jain, N.; Moldovan, R.-P.; Toussaint, M.; Deuther-Conrad, W.; Ludwig, F.-A.; Teodoro, R.; Sattler, T.; Sadeghzadeh, M.; Sabri, O.; Brust, P.

Overexpression of monocarboxylate transporters (MCTs) has been shown for a variety of human cancers (e.g. colon, brain, breast, and kidney) and inhibition resulted in intracellular lactate accumulation, acidosis and cell death. Thus, MCTs are promising targets to investigate tumor cancer metabolism with positron emission tomography (PET). Here, the organ doses (OD) and the effective dose (ED) of the first 18F-labeled MCT1/MCT4 inhibitor were estimated in juvenile pigs. Whole-body dosimetry was performed in three piglets (age: ~6 weeks, weight: ~13-15 kg). The animals were anaesthetized and subjected to sequential PET/CT up to 5h after i.v. injection of 156 ± 54 MBq [18F]FACH. All relevant organs were defined by volumes of interest. Exponential curves were fitted to the time-activity data. Time and mass scales were adapted to the human order of magnitude and the ODs calculated using the ICRP 89 adult male phantom with OLINDA 2.1. The ED was calculated using tissue weighting factors as published in the ICRP103. The highest organ dose was received by the urinary bladder (62.6 ± 28.9 µSv/MBq), followed by the gall bladder(50.4 ± 37.5 µSv/MBq) and the pancreas (30.5 ± 27.3 µSv/MBq). The highest contribution to the ED was by the urinary bladder (2.5 ± 1.1 µSv/MBq) followed by the red marrow (1.7 ± 0.3 µSv/MBq) and the stomach (1.3 ± 0.4 µSv/MBq). According to this preclinical analysis,the ED to humans is 12.4 µSv/MBq when applying the ICRP103 tissue weighing factors. Taking into account that preclinical dosimetry underestimates the dose to humans by up to 40%, the conversion factor applied for estimation of the ED to humans would raise to 20.6 µSv/MBq. Resultantly, the ED to humans upon an i.v. application of ~300 MBq [18F]FACH would be about 6.2mSv. This risk assessment encourages to translate [18F]FACH to clinical study phases and to further investigate its potential as a clinical tool for cancer imaging with PET.

Keywords: preclinical radiopharmaceutical dosimetry; [18F]FACH; radiation safety; image based internal dosimetry; OLINDA; MCT1/MCT4 lactate transporter inhibitor

Permalink: https://www.hzdr.de/publications/Publ-30846