Development of novel analogs of the monocarboxylate transporter ligand FACH and biological validation of one potential radiotracer for PET imaging


Development of novel analogs of the monocarboxylate transporter ligand FACH and biological validation of one potential radiotracer for PET imaging

Sadeghzadeh, M.; Wenzel, B.; Gündel, D.; Deuther-Conrad, W.; Toussaint, M.; Moldovan, R.-P.; Fischer, S.; Teodoro, R.; Jonnalagadda, S.; Jonnalagadda, S. K.; Mereddy, V. R.; Drewes, L. R.; Brust, P.

Monocarboxylate transporters 1-4 (MCT1-4) are involved in several metabolism-related diseases, especially cancer, providing the chance to be considered as relevant targets for diagnosis and therapy. [18F]FACH was recently developed and showed very promising preclinical results as a potential PET radiotracer for imaging of MCTs, which encouraged us to develop the novel analogs 1 and 2 of FACH. They were synthesized via Buchwald-Hartwig amination starting from m-anisidine followed by Vilsmeier-Haack formylation and Knoevenagel condensation in moderate overall yields. MCT1 inhibition was estimated by [14C]lactate uptake assay on rat brain endothelial (RBE4) cells. Although 2 showed 25-times lower MCT1 inhibitory potency than FACH (IC50 = 11 nM), compound 1 could be a suitable PET candidate with an IC50 value of 118 nM. Therefore, 1 was selected for radiosynthesis of [18F]1 and subsequent biological evaluation as a potential PET radiotracer for imaging of the MCT expression in mouse brain. By in vitro autoradiography in cryosections of the mouse kidney, 50% displacement of [18F]1 by 10 µM of the specific MCT1 inhibitor α-cyano-4-hydroxycinnamic acid (α-CHC) was observed. Despite a higher lipophilicity of [18F]1 compared to [18F]FACH, in vivo brain uptake of [18F]1 was in a similar range, likely to be related to similar transport rates by MCTs on RBE4 cells. The high uptake of the new radiotracer in kidney and other peripheral MCT-expressing organs together with significant reduction by α-CHC, suggests the suitability of [18F]1 for imaging of the MCTs expression in vivo.

Keywords: monocarboxylate transporters (MCTs); FACH; 18F-labeled analog of FACH; α-CHC; blood-brain barrier (BBB); positron emission tomography (PET) imaging

Permalink: https://www.hzdr.de/publications/Publ-30853