Voxel-based finite element modelling of wood elements based on spatial density and geometry data using computed tomography


Voxel-based finite element modelling of wood elements based on spatial density and geometry data using computed tomography

Hartig, J. U.; Bieberle, A.; Engmann, C.; Haller, P.

In this paper, voxel-based finite element modelling based on spatial geometry and density data is applied to simulate the detailed stress and strain distribution in a large wooden element. As example, a moulded wooden tube with a length of 3 m and a diameter of 0.3 m is examined. Gamma-ray computed tomography is used to obtain the spatial distribution of elastic properties based on the correlation with density. Correlation functions between density and elastic material properties are experimentally determined and serve as link for defining the non-uniform distribution of the material properties in the finite element model. Moreover, also the geometry is obtained by the computed tomography. Due to the consideration of both the geometric imperfections and the spatial variation of the material properties, a detailed analysis of the stress and strain distribution of the wood element is performed. Additionally, a non-destructive axial compression test is performed on the wooden tube to analyse the load-bearing behaviour. By means of digital image correlation, the deformation of the surface is obtained, which also serves for validation of the finite element model.

Keywords: large wooden elements; gamma-ray computed tomography; finite element model

Involved research facilities

  • TOPFLOW Facility

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-30913