Detailed Simulation of the Nominal Flow and Temperature Conditions in a Pre-Konvoi PWR Using Coupled CFD and Neutron Kinetics


Detailed Simulation of the Nominal Flow and Temperature Conditions in a Pre-Konvoi PWR Using Coupled CFD and Neutron Kinetics

Höhne, T.; Kliem, S.

Since 2005, events have occurred involving increased operational oxidation of M5 fuel rod claddings at several German pressurized water reactors (PWRs). The conspicuous corrosion was observed mainly in the area between the two uppermost spacer grids (SG), i.e. the 8th and the 9th SG. In this area the transition from the active fuel rod area (filled with fuel) to the fuel rod plenum takes place. In some cases, the increased oxide layer was even found in the region of the fuel rod plenum, where no appreciable power is transferred from the fuel rod to the coolant.

One of the hypotheses assumes that an initial oxide layer first arises more or less over the entire length of the fuel rod. Depending on the height position different thermal conditions may occur in the form of temperature fluctuations. According to this hypothesis, it is assumed that the oxide layer ruptures due to the load from alternating temperatures, creating pathways where oxidizing species reach the metallic cladding rod surface. As a result, the oxide layer loses its protective effect and thicker oxide layers can grow up. From earlier experimental investigations at ROCOM (Rossendorf Coolant Mixing Test Facility) it is known that strong, large-scale vortex structures are present in the upper plenum of the RPV.

The aim of the present study was the detection of possible vortices in the upper part of the core. Therefore, a numerical simulation of the flow conditions in a Pre-Konvoi Pressurized Water Reactor (PWR) was carried out based on a complex 3D CFD model. The geometry of the CFD model includes the entire Reactor Pressure Vessel (RPV) plus all relevant internals. The core is modelled as a porous body, the different pressure losses along and transverse to the main flow direction were considered. The spacer-grid levels were taken into account to the extent that in these areas no cross-flow is possible. The calculation was carried out for nominal operating conditions, i.e. for full load operation. Furthermore, a prototypical End of Cycle (EOC) power distribution was assumed. For this, a power distribution was applied as obtained from a stationary full-core calculation with the 3D neutron kinetics code DYN3D. In order to be able to adequately reproduce flow vortexes, the calculation was performed transiently with suitable Detached Eddy Simulations (DES) turbulence models.

The calculation showed fluctuating transverse flow in the upper part of the core, starting at the 8th spacer grid but also revealed that no large dominant vortices exists in this region. It seems that the core acts as a rectifier attenuating large-scale vortices. The analyses included several spacer grid levels in the core and showed that in some areas of the core cross-section an upward increasingly directed transversal flow to the outlet nozzle occurs. In other areas of the core cross-section, on the other hand, there is nearly any cross-flow. However, the following limitations of the model apply: In the model all fuel elements are treated identical and cross flows due to different axial pressure losses for different FA types cannot be displayed. The complex structure of the FAs (eg. flow vanes in spacer grids) could also influence the formation of large-scale vortices. This effect could only be resolved with a very high number of grid elements (several billions). This is currently not possible from a computational point of view. Also, the possible influence of two-phase flows was not considered.

Keywords: PWR; CFD; Neutron Kinetics; Turbulence

  • Contribution to proceedings
    CFD4NRS-8 : Computational Fluid Dynamics for Nuclear Reactor Safety - OECD/NEA Workshop, 25.-27.11.2020, Palaiseau, Frankreich
  • Lecture (Conference)
    CFD4NRS-8 : Computational Fluid Dynamics for Nuclear Reactor Safety - OECD/NEA Workshop, 25.-27.11.2020, Palaiseau, Frankreich
  • Open Access Logo Fluids 5(2020)3, 161
    Online First (2020) DOI: 10.3390/fluids5030161

Permalink: https://www.hzdr.de/publications/Publ-30930