Corrigendum to “Controls on strath terrace formation and evolution: The lower Guadiana River, Pulo do Lobo, Portugal”


Corrigendum to “Controls on strath terrace formation and evolution: The lower Guadiana River, Pulo do Lobo, Portugal”

Ortega-Becerril, J. A.; Garzón, G.; Tejero, R.; Meriaux, A.-S.; Delunel, R.; Merchel, S.; Rugel, G.

The authors regret publishing the original article while omitting four authors. The correct author list and affiliations have now been corrected.
We would also like to make the clarifications and corrections listed below on the cosmogenic radionuclide (CRN) analysis.
1) All ¹⁰Be samples were collected in 2010 and prepared at the Newcastle Cosmogenic Isotope Laboratory. Accelerator mass spectrometry (AMS) of ¹⁰Be was performed in 2011 at the DREAMS-facility at the Helmholtz-ZentrumDresden-Rossendorf (HZDR) (Akhmadaliev et al., 2013).
2) All the ¹⁰Be model ages were calculated similarly to Mériaux et al. (2012). Spallation and muon production rate schemes are compatible with the CRONUS-Earth calculator v2.2 using the mid-latitude attenuation length of Farber et al. (2008). Ζero erosion model ages were calculated similarly than the Stone/Lal scaling scheme of Balco et al. (2008) with a constant production rate “St” for ¹⁰Be of 4.49 ± 0.39 atoms/g·year instead of the updated 4.01 ± 0.32 atoms/g·year for that scheme by Phillips et al. (2016). The “St” model ages are corrected for the production rate update. Thickness corrections assume a density of ρ = 2.65 g/cm³ for each sample.
The topographic shielding is derived from topographic data collected in the field. The propagated analytical uncertainties include
error blank, carrier, counting statistics and the uncertainty of the standard-like material SMD-Be-12 (Akhmadaliev et al., 2013). The propagated uncertainties include statistical uncertainties from the AMS, 8% uncertainty on the production rate, 0.87% for the decay constants of ¹⁰Be (Korschinek et al., 2010), as well as uncertainty of 5% on the density and 2.25% on the attenuation length of 177 ± 4 g/cm² (Farber et al., 2008). The ages are given in ka. Table 2 has been corrected and completed with the time-dependent model ages calculated using the “LSDn” scaling model (Lifton et al., 2014).
These “LSDn” model ages integrate the variation of the magnetic field over time together with the non-dipole field components and up-to-date spallation and muon scaling schemes with elevation, latitude and longitude, and production rate of 3.92 ± 0.31 atoms/g·year for this LSDn scaling (see Borchers et al., 2016, Marrero et al., 2016 and Phillips et al., 2016 for details). In both cases, all the CRN model ages are calculated assuming no erosion, therefore all these models are minimum ages for that of the strath terraces.
The authors would like to apologise for any inconvenience caused.

Keywords: AMS; geomorphology

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-31090