Cd2+ incorporation in small pores LEV/ERI intergrown zeolites: a multi-methodological study


Cd2+ incorporation in small pores LEV/ERI intergrown zeolites: a multi-methodological study

Cametti, G.; Scheinost, A.; Churakov, S. V.

Small pores zeolites are successfully employed as catalysts, sorbents and molecular sieves. Their physiochemical properties can be improved by modifying their extraframework (EF) cation content via ion exchange. In this study, we investigate the crystal structure of a Cd-exchanged levyne (LEV) intergrown with erionite (ERI) by combining Single Crystal X-ray Diffraction (SCXRD), Molecular Dynamic simulations (MD) and Extended X-ray Absorption Fine- Structure analysis spectroscopy (EXAFS). Data obtained from the different techniques, consistently indicated that Cd2+ distribute in an almost ordered fashion in LEV. In contrast, strong disorder of the EF species (Cd2+ and H2O) is observed in the ERI cavities. In the latter, Cd2+ form aqueous complexes that are more mobile in comparison towith respect Cd2+ in LEV, where it bonds to H2O and framework-oxygen atoms. The formation of Cd-clusters is excluded based on EXAFS analysis. Finally, to discriminate between thermal and static disorder, we proposed a new approach based on a combined MD and geometry optimization analysis.

Keywords: zeolite; levyne; MD simulations; DFT; XRD; EXAFS; ROBL

Involved research facilities

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-31700