Benchmarking of computational fluid dynamic models for bubbly flows


Benchmarking of computational fluid dynamic models for bubbly flows

Colombo, M.; Rzehak, R.; Fairweather, M.; Liao, Y.; Lucas, D.

Eulerian-Eulerian computational fluid dynamic (CFD) models allow the prediction of complex and large-scale industrial multiphase gas-liquid bubbly flows with a relatively limited computational load. However, the interfacial transfer processes are entirely modelled, with closure relations that often dictate the accuracy of the entire model. Numerous sets of closures have been developed, often optimized over few experimental data sets and achieving remarkable accuracy that, however, becomes difficult to replicate outside of the range of the selected data. This makes a reliable comparison of available model capabilities difficult and obstructs their further development. In this paper, the CFD models developed at the University of Leeds and the Helmholtz-Zentrum Dresden-Rossendorf are benchmarked against a large database of bubbly flows in vertical pipes. The research groups adopt a similar modelling strategy, aimed at identifying a single universal set of widely applicable closures. The main focus of the paper is interfacial momentum transfer, which essentially governs the void fraction distribution in the flow, and turbulence modelling closures. To focus on these aspects, the validation database is limited to experiments with a monodispersed bubble diameter distribution. Overall, the models prove to be reliable and robust and can be applied with confidence over the range of parameters tested. Areas are identified where further development is needed, such as the modelling of bubble-induced turbulence and the near-wall region. A benchmark is also established and is available for the testing of other models. Similar exercises are encouraged to support the confident application of multiphase CFD models, together with the definition of a set of experiments accepted community-wide for model benchmarking.

Keywords: computational fluid dynamics; multiphase flows; bubbly flows; interfacial closures; multiphase turbulence

Permalink: https://www.hzdr.de/publications/Publ-31746