Local and nonlocal spin Seebeck effect in lateral Pt-Cr2O3-Pt devices at low temperatures


Local and nonlocal spin Seebeck effect in lateral Pt-Cr2O3-Pt devices at low temperatures

Muduli, P.; Schlitz, R.; Kosub, T.; Hübner, R.; Erbe, A.; Makarov, D.; Goennenwein, S. T. B.

We have studied thermally driven magnon spin transport (spin Seebeck e_ect, SSE) in heterostructures of antiferromagnetic Cr2O3 and Pt at low temperatures. Monitoring the amplitude of the local and nonlocal SSE signals as a function of temperature, we found that both decrease with increasing temperature and disappear above 100 K and 20 K, respectively. Additionally, both SSE signals show a tendency to saturate at low temperatures. The nonlocal SSE signal decays exponentially for intermediate injector-detector separation, consistent with magnon spin current transport in the relaxation regime. We estimate the magnon relaxation length of our Cr2O3 films to be around 500 nm at 3 K. This short magnon relaxation length along with the strong temperature dependence of the SSE signal indicates that temperature-dependent inelastic magnon scattering processes play an important role in the intermediate range magnon transport. Our observation is relevant to low-dissipation antiferromagnetic magnon memory and logic devices involving thermal magnon generation and transport.

Keywords: spin Seebeck effect; antiferromagnetic spintronics

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-32003