Magnetosensitive e-skins for interactive devices


Magnetosensitive e-skins for interactive devices

Canon Bermudez, G. S.; Makarov, D.

The growth of electronics and computer science in the last years has brought humans and machines closer than ever before. As this trend continues, new kinds of human-machine interactions are needed in a hyperconnected world. A key element for these interactions is flexible electronics, which attempts to seamlessly link living and artificial entities using electronic skins (e-skins). E-skins merge the functionality of standard electronics with the soft, stretchable, and biocompatible qualities of human skin or tissue. So far, the focus has been to reproduce the traditional functions associated with human skin, such as, temperature, pressure, and chemical detection. New developments have also introduced nonstandard sensing capabilities like magnetic field detection, to give birth to the field of magnetosensitive e-skins. Adding a supplementary information channel—an electronic sixth sense—could trigger new applications in the fields of cognitive psychology and human-machine interactions. Here, we review recent advances in magnetosensitive e-skins, which utilize the full interaction potential of the magnetic field vector to detect position, orientation, and mechanical stimuli. These magnetosensitive e-skins open exciting possibilities for touchless and gestural control in virtual and augmented reality, sensory substitution, and multimodal sensing; beyond the limitations of optics-based systems.

Keywords: flexible electronics; interactive electronics; magnetosensitive smart skins

Permalink: https://www.hzdr.de/publications/Publ-32004