Thermoelectric Performance of the Half-Heusler Phases RNiSb (R = Sc, Dy, Er, Tm, Lu): High Mobility Ratio between Majority and Minority Charge Carriers


Thermoelectric Performance of the Half-Heusler Phases RNiSb (R = Sc, Dy, Er, Tm, Lu): High Mobility Ratio between Majority and Minority Charge Carriers

Ciesielski, K.; Synoradzki, K.; Veremchuk, I.; Skokowski, P.; Szymanski, D.; Grin, Y.; Kaczorowski, D.

Deeper understanding of electrical and thermal transport is critical for further development of thermoelectric materials. Here we describe the thermoelectric performance of a group of rare-earth-bearing half-Heusler phases determined in a wide temperature range. Polycrystalline samples of ScNiSb, DyNiSb, ErNiSb, TmNiSb, and LuNiSb are synthesized by arc melting and densified by spark plasma sintering. They are characterized by powder x-ray diffraction and scanning electron microscopy. The physical properties are studied by means of heat-capacity and Hall-effect measurements performed in the temperature range from 2 to 300 K, as well as electrical-resistivity, Seebeck-coefficient, and thermal-conductivity measurements performed in the temperature range from 2 to 950 K. All the materials except TmNiSb are found to be narrow-gap intrinsic p-type semiconductors with rather light charge carriers. In TmNiSb, the presence of heavy holes with large weighted mobility is evidenced by the highest power factor among the series (17 mu W K-²cm(-¹) at 700 K). The experimental electronic relaxation time calculated with the parabolic band formalism is found to range from 0.8 x 10(-¹⁴) to 2.8 x 10(-¹⁴) s. In all the materials studied, the thermal conductivity is between 3 and 6 W m(-¹) K-¹ near room temperature (i.e., smaller than in other pristine d-electron half-Heusler phases reported in the literature). The experimental observation of the reduced thermal conductivity appears fully consistent with the estimated low sound velocity as well as strong point-defect scattering revealed by Debye-Callaway modeling. Furthermore, analysis of the bipolar contribution to the measured thermal conductivity yields abnormally large differences between the mobilities of n-type and p-type carriers. The latter feature makes the compounds examined excellent candidates for further optimization of their thermoelectric performance via electron doping.

Downloads

Permalink: https://www.hzdr.de/publications/Publ-32088