Ultrathin Co films with Pt and Au covers - magnetic and structural properties driven by Ga+ ion irradiation


Ultrathin Co films with Pt and Au covers - magnetic and structural properties driven by Ga+ ion irradiation

Mazalski, P.; Ohnoutek, L.; Sveklo, I.; Beran, L.; Kurant, Z.; Powroźnik, W.; Wawro, A.; Liedke, M. O.; Butterling, M.; Wagner, A.; Faßbender, J.; Hamrle, J.; Antoš, R.; Kletecka, V.; Veis, M.; Maziewski, A.

The X/Co 3nm/Y (where X, Y=Au, Pt) trilayers with as deposited in-plane magnetization alignment were irradiated with 30 keV Ga+ ions in the wide range of ion fluence. The samples were investigated by means of complementary techniques: magneto-optical magnetometry and spectroscopy (in the photon energy range from 1.2 eV to 4.5 eV), magnetic force microscopy, positron annihilation spectroscopy, X-ray diffraction and reflectivity. Difference in miscibility of interface atoms is clearly manifested in various intermixing extent at Co/Pt and Co/Au interfaces and consequently in magnetic properties of the irradiated trilayers. Low irradiation fluence (~1014 ions/cm2) leads to ~1nm interfaces broadening without visible surface etching for all samples, which is related with a distinct drop of magnetic anisotropy. However, the high irradiation fluence (~5·1015 ions/cm2) results in enhanced interface broadening and significant surface etching (~5 nm) partially removing also Co atoms. Tensile strains (up to 0.5%) were developed in the cover layers. The tensile strain, layers intermixing and the creation of Co-Pt(Au) alloys with different composition formed by irradiation are correlated with the increase of magnetic anisotropy. Moreover it was observed that substitution of Au instead of Pt (as a cap or buffer layer) results in substantial increase of perpendicular magnetic anisotropy. Maximal increase of magnetooptical parameters was observed for Pt/Co/Pt layer. Irradiation induced changes of concentration profiles are revealed using magnetooptical spectra, X-ray reflectivity spectra and simulations with use of binary collision approximation.

Keywords: perpendicular magnetic anisotropy; ion irradiation; positron annihilation spectroscopy; magneto-optical Kerr spectroscopy; molecular beam epitaxy

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-32089