Small scale short circuits due to metal-droplet transfer in liquid metal batteries


Small scale short circuits due to metal-droplet transfer in liquid metal batteries

Benard, S.; Landgraf, S.; Weber, N.; Weier, T.

Liquid metal batteries (LMBs) have been discussed as stationary energy storage for integrating highly volatile renewable energy sources into the electric grid. The cheap and abundant electrode materials, extreme current densities and potentially very long life time make LMBs excellent candidates for storage applications. As a typical cell, Li-Bi LMBs consist of a molten Bi-electrode on the bottom, an ion-conducting liquid electrolyte in the middle and a molten Li-electrode on the top – as illustrated schematically in Fig. 1. In order to avoid contact of the anode with the cell housing, the molten Li is typically contained in a solid Ni-Fe foam. During discharge, the anode metal Li is oxidized, and the ion crosses the electrolyte layer before alloying with the molten Bi. At charge, this process is reversed and Li de-alloyed and transferred back into the metal-foam anode.
When cycling such batteries for several days, sometimes short voltage drop-offs can be observed. As illustrated in Fig. 1, such quick changes of the cell potential can most probably be explained by a sudden non-faradaic Li-transfer from the anode to the cathode. After operating Li-Bi cells and removing the current collector with the Ni-Fe-foam, sometimes solid spots, formed of an intermetallic phase, can be observed below of the foam – as shown in the inset in Fig. 1. These intermetallic phases can appear only if Bi from the cathode touches the anode, e.g. during a localized short circuit. Considering that the metal foam reacts slightly with the molten salt, it might happen that the wetting behavior between molten Li and foam changes with time. A missing wetting could – finally – lead to the formation of small Li-droplets below of the foam when charging the cell. If such droplets grow too much, they might lead to a local short circuit and may thus explain the phenomena illustrated in Fig. 1. Bases on this motivation, the formation, detachment and transport of such droplets as well as a possible short circuit is studied.

  • Lecture (Conference)
    Electromagnetic processing of materials, 13.-17.06.2021, Riga, Lettland

Permalink: https://www.hzdr.de/publications/Publ-32100