The state of platinum in pyrrhotite determined by X-ray absorption spectroscopy


The state of platinum in pyrrhotite determined by X-ray absorption spectroscopy

Filimonova, O. N.; Trigub, A. L.; Nickolsky, M. S.; Chareev, D. A.; Kvashnina, K.; Kovalchuk, E. V.; Vikentyev, I. V.; Reukov, V. L.; Tagirov, B.

Pyrrhotite Fe 1-x S is the main component of platinum group elements (PGE) ores and contains from few tenths of ppm to a few hundred ppm of disseminated Pt. Here we report an investigation of the state of Pt in synthetic pyrrhotite performed by X-ray absorption spectroscopy (XAS) in combination with theoretical spectra modeling. The pyrrhotite crystals were obtained by means of salt flux technique, using an eutectic mixture of alkali metal halides as a transport media. Analysis of the chemical composition of synthesized crystals showed that an increase of the temperature and sulfur fugacity yields higher concentrations of Pt in pyrrhotite. The Pt content reaches 0.6 wt% at the maximum studied temperature and sulfur fugacity ( t = 720°C, log f (S 2 ) = -0.1) in Pt-saturated system. Analysis of Pt L 3 -edge XANES spectra revealed that Pt presents in pyrrhotite in the 4+ and 2+ “formal” oxidation states. Theoretical modeling of XANES and approximation of EXAFS spectra showed that Pt 4+ substitutes for Fe in the crystal lattice of pyrrhotite, whereas Pt 2+ forms PtS-like clusters disseminated in the pyrrhotite matrix. Atoms of isomorphous Pt are surrounded by 6 S atoms at a distance of 2.39±0.02 Å. According to theoretical FDMNES simulations of XANES spectra, in the solid solution state the 2 nd coordination sphere of Pt contains one vacancy in the Fe sublattice within the Fe-layer. The PtS-like clusters can be considered as a quench product. High sulfur fugacity stabilizes the solid solution Pt and prevents the formation of the PtS-like clusters during cooling.

Involved research facilities

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-32114