Correlations between the structural transformations and concentration quenching effect for RE-implanted ZnO systems


Correlations between the structural transformations and concentration quenching effect for RE-implanted ZnO systems

Ratajczak, R.; Mieszczynski, C.; Prucnal, S.; Krajewski, T. A.; Guziewicz, E.; Wozniak, W.; Kopalko, K.; Heller, R.; Akhmadaliev, S.

In this paper, we present optical, structural and electrical studies of the phenomenon called concentration quenching effect occurring in ZnO doped with Rare Earth (RE) ions. For this purpose, the epitaxial ZnO layers grown by the Atomic Layer Deposition (ALD) are doped by ion implantation with Yb and Er elements with fluencies ranging from 5 × 1013 to 1 × 1016/cm2. In order to activate optically the implanted RE and to remove defects, the post-implantation thermal annealing was performed at 800 °C for 10 min in the O2 atmosphere using a Rapid Thermal Annealing (RTA) system. Two-step processed samples, before and after annealing, were evaluated by Rutherford Backscattering Spectrometry (RBS/c) to investigate the damage build-up process in the ZnO lattice after RE ion bombardment and the lattice site location of RE. The annealed samples were examined using the photoluminescence (PL) spectroscopy and Hall effect measurements. Our studies show that the luminescence quenching effect, as well as the electrical resistivity response to the increased RE concentration, are strongly connected with the threshold of the structural transformation due to defects accumulation. It suggests that during structural transformations the RE-ion centers are sufficiently close together to be able to interact and transfer the excitation energy between each other, increasing ipso facto the probability to lose the excitation energy by non-radiative processes. Moreover, in contrast to the popular belief, that the concentration quenching effect in RE-doped ZnO depends strongly on the kind of RE-doped ion, the presented results do not provide any evidence to support such an assumption.

Keywords: Rare earth; Ytterbium; Ion Implantation; Rutherford Backscattering Spectrometry (RBS/c); Erbium

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-32138