Quantum disordered state in the J1-J2 square-lattice antiferromagnet Sr2Cu(Te0.95W0.05)O6


Quantum disordered state in the J1-J2 square-lattice antiferromagnet Sr2Cu(Te0.95W0.05)O6

Yoon, S.; Lee, W.; Lee, S.; Park, J.; Lee, C. H.; Choi, Y. S.; Do, S.-H.; Choi, W.-J.; Chen, W.-T.; Chou, F.; Gorbunov, D.; Oshima, Y.; Ali, A.; Singh, Y.; Berlie, A.; Watanabe, I.; Choi, K.-W.

The B-site ordered double perovskites Sr2Cu(Te1−xWx)O6 provide an excellent arena for investigating exotic phases expected for the J1-J2 square-lattice Heisenberg antiferromagnet. Here, combining magnetic susceptibility and specific-heat measurements with electron spin resonance (ESR) and muon spin rotation/relaxation (μSR) techniques, we explore a spin-liquid-like state in the vicinity of the Néel critical end point (x = 0.05–0.1). The specific heat and the ESR and muon relaxation rates give evidence for an energy hierarchy of low-energy excitations, reminiscent of randomness-induced singlet states. In addition, the weak transverse μSR data show a fraction of frozen magnetic moments in the random-singlet background. The origin of a random-singlet-like state near the phase boundary is discussed in terms of concomitant exchange randomness and local strain generated by the W6+-for-Te6+ substitution.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-32156