Open-source computational model for polymer electrolyte fuel cells


Open-source computational model for polymer electrolyte fuel cells

Weber, N.; Knüpfer, L.; Beale, S. B.; Lehnert, W.; Reimer, U.; Zhang, S.; Ferreira-Aparicio, P.; M. Chaparro, A.

Open-source fuel cell models outmatch commercial codes in many important aspects. By providing the source code, reuse, modification and extension of the model and comparison with other codes becomes possible. With this motivation, we present a three-dimensional, steady-state, non-isothermal proton exchange membrane fuel cell model, implemented in the open-source finite volume library OpenFOAM® . At every stage of implementation, special care was taken to ensure a well documented, organised, and modular structure of the software. The resulting model suite can, and should, be extended with new sub-modules by the user. The main field of application, modelling of fuel cells from an engineering perspective, is demonstrated by simulating two different conventional polymer electrolyte fuel cells, operated at CIEMAT and Forschungszentrum Jülich, respectively.

  • Open Access Logo OpenFOAM Journal 2(2023), 26-48
    DOI: 10.51560/ofj.v3.50
    ISSN: 2753-8168
  • Software in external data repository
    Publication year 2021
    Programming language: C++
    System requirements: OpenFOAM-v2012
    License: GNU GPLv3
    Hosted on GitLab: Link to location

Permalink: https://www.hzdr.de/publications/Publ-32245