Brillouin Light Scattering Revisited


Brillouin Light Scattering Revisited

Schultheiß, K.; Schultheiß, H.

Since the 80’s, when Brillouin light scattering emerged as a powerful tool for investigating magnetization dynamics in thin films and multilayers, it developed into a versatile microscopic probe for studying collective spin excitations. Following a short introduction on studies of millimeter-sized films, we will give examples how to investigate individual magnetic structures down to tens of nanometers in dimension. We will introduce the concepts of time- and phase-resolved Brillouin light scattering which give full access to the spatio-temporal evolution of the optically accessible spin-wave spectrum. During our talk, we will provide hands-on demonstrations how to drive spin waves via spin currents and microwave excitations in magnetic nanostructures using the build in dc/ac probe station in our laboratory and show the capabilities of Brillouin light scattering for quantifying spin-wave phenomena. Furthermore, we will highlight similarities and differences to other optical scanning probe techniques such as time-resolved magneto-optical Kerr microscopy and optically detected magnetic resonance based on vacancy centers. We will outline how those techniques can potentially be combined with Brillouin light scattering to access complementary information.

Keywords: Brillouin light scattering; magnetization dynamics; spin waves; magneto optics

Involved research facilities

Related publications

  • Invited lecture (Conferences) (Online presentation)
    INTERMAG 2021, 26.-30.04.2021, online (planned: Lyon), online (planned: France)

Permalink: https://www.hzdr.de/publications/Publ-32267