Recovery of spheroidized graphite from spent lithium-ion batteries


Recovery of spheroidized graphite from spent lithium-ion batteries

Vanderbruggen, A.; Rudolph, M.

Recycling of lithium ion battery has attracted a lot of attention and is particularly focusing on the valuable metals such as cobalt, nickel and lithium. Despite the growth in graphite consumption and the fact that it is counted as a critical material in Europe, USA and Australia, there is little previous work focusing on graphite recycling. Thus, graphite usually remains in slags from the metallurgical treatments. The aim of this research is to increase the recycling recovery of the LIBs by developing a new innovative process, which minimizes metal losses and is able to recover graphite. By integrating a flotation stage, this recycling process is able to separate battery electrode materials while preserving their functional integrity in order to reintegrate them in the value chain of LiB production. Two valuable products, one of graphite and one with the valuable metals are recovered using a batch mechanically agitated Outotec flotation cell. Batch flotation study shows that pre-treatment, such as attritioning, improves the process. The graphite recovery is +98 % with a grade of 80 wt. %. This research aims to reach closed-loop system for spheroidized graphite from spent LIBs.

Keywords: Recycling; Lithium ion battery; Froth flotation; Graphite; critical raw material

  • Invited lecture (Conferences)
    25th International Congress for Battery Recycling ICBR 2020, 16.-18.09.2021, Salzburg, Austria

Permalink: https://www.hzdr.de/publications/Publ-32269