Increasing the recycling rate of spent lithium ion battery recycling by recovering spheroidized graphite


Increasing the recycling rate of spent lithium ion battery recycling by recovering spheroidized graphite

Vanderbruggen, A.; Rudolph, M.

Lithium ion battery is composed of a lot of raw materials such as Co, Ni, Li, Al, Cu and graphite. Graphite represents around 20 wt. % of a lithium-ion battery. Graphite from spent lithium-ion batteries is rarely recovered and usually remains in slags from the metallurgical treatments. During lithium-ion battery recycling, the graphite particles end up are liberated from the copper foils and end up in the fine fraction (below 100 µm). This fraction is also composed of lithium metal oxides. Lithium metal oxides and graphite can be separated by froth flotation. The aim of this research is to increase the recycling recovery of the LiBs by developing a new innovative process, which minimizes metal losses and is able to recover graphite. Two valuable products, one of graphite and one with the valuable metals are recovered using a batch mechanically agitated Outotec flotation cell. Batch flotation study shows that pre-treatment, such as attritioning, improves the process. This research aims to reach closed-loop system for spheroidized graphite from spent LiB.

Keywords: Recycling; Lithium ion battery; Froth flotation; critical raw material; Graphite

  • Invited lecture (Conferences)
    10th Advanced Automotive battery conferences AABC 2020 - Battery recycling Symposium, 12.-16.01.2021, Wiesbaden, Germany

Permalink: https://www.hzdr.de/publications/Publ-32272