Recovery of nanodiamonds produced by laser-induced shock compression of polystyrene


Recovery of nanodiamonds produced by laser-induced shock compression of polystyrene

Schuster, A.; Hartley, N.; Lütgert, B. J.; Voigt, K.; Vorberger, J.; Zhang, M.; Benad, A.; Eychmüller, A.; Klemmed, B.; Gericke, D. O.; Rack, A.; Bagnoud, V.; Blazevic, A.; Brabetz, C.; Eisenbarth, U.; Götte, S.; Reemts, D.; Schumacher, D.; Toimil Molares, M. E.; Tomut, M.; Kraus, D.

Hydrocarbons are highly abundant in icy giant planets like Uranus and Neptune and their interior conditions can be created in the laboratory on a nanosecond timescale by applying the technique of laser-induced shock compression using high energy lasers. Based on this method, nanodiamond formation in a simplified hydrocarbon representative, polystyrene (C₈H₈), was observed via in situ X-ray diffraction (XRD). The goal is to physically recover the nanodiamonds that are ejected at hypervelocities upon shock-break out to un-derstand the underlying hydrocarbon separation mechanism by analysing their shape, size, surface mod-ifications and defects. This work is important for planetary interior modelling and may present an additional route for nanodiamond production.

  • Open Access Logo Contribution to external collection
    in: News and Reports from High Energy Density generated by Heavy Ion and Laser Beams 2019, Darmstadt: GSI, 2020
    DOI: 10.15120/GSI-2020-01321

Permalink: https://www.hzdr.de/publications/Publ-32305