Flexible magnetoreceptor with tunable intrinsic logic for on-skin touchless human-machine interfaces


Flexible magnetoreceptor with tunable intrinsic logic for on-skin touchless human-machine interfaces

Makushko, P.; Oliveros Mata, E. S.; Canon Bermudez, G. S.; Hassan, M.; Laureti, S.; Rinaldi, C.; Fagiani, F.; Barucca, G.; Schmidt, N.; Zabila, Y.; Kosub, T.; Illing, R.; Volkov, O.; Vladymyrskyi, I.; Faßbender, J.; Albrecht, M.; Varvaro, G.; Makarov, D.

Artificial magnetoception is a new and yet to be explored path for humans to interact with our surroundings. This technology is enabled by thin film magnetic field sensors embedded in a soft and flexible format to constitute magnetosensitive electronic skins (e-skins). Being limited by the sensitivity to in-plane magnetic fields, magnetosensitive e-skins are restricted to basic proximity and angle sensing and are not used as switches or logic elements of interactive wearable electronics. Here, we demonstrate a novel magnetoreceptive platform for on-skin touchless interactive electronics based on flexible spin valve switches with the sensitivity to out-of-plane magnetic fields. The technology relies on all-metal Co/Pd-based spin valves with a synthetic antiferromagnet possessing perpendicular magnetic anisotropy. The flexible magnetoreceptors act as logic elements, namely momentary and permanent (latching) switches. The switches maintain their performance even upon severe bending to a radius of less than 5 mm and withstand repetitive bending for hundreds of cycles. We integrated flexible switches in on-skin interactive electronics and demonstrated their performance as touchless human-machine interfaces, which are intuitive to use, energy efficient, and insensitive to external magnetic disturbances. This technology offers qualitatively new functionalities for electronic skins and paves the way towards full-fledged on-skin touchless interactive electronics.

Keywords: flexible electronics; magnetic field sensors; flexible spin valve; skin-conformal; sensor

Permalink: https://www.hzdr.de/publications/Publ-32395