Identification and characterization of gallium-binding peptides


Identification and characterization of gallium-binding peptides

Schönberger, N.

The present work demonstrates how a peptide-based material can be obtained for the biosorptive recovery of metals from contaminated industrial wastewater. Starting with Phage surface display for the initial identification and optimization of gallium-binding peptides, all the following application-focussed experiments are based on chemically synthesized peptides.
Two chromatography-based biopanning methods for the identification of gallium-binding peptides from a commercial phage display library were developed. Five gallium-binding peptide sequences were identified and evaluated to show good gallium-binding properties.
Furthermore, the biosorption of free gallium and arsenic by gallium-binding bacteriophage clones was investigated. A large influence of the pH-value on the respective interactions was demonstrated.
Mutagenesis experiments were also carried out for a bacteriophage clone expressed peptide, in which a cysteine pair systematically replaced amino acids. Biosorption experiments with the resulting seven different bacteriophage mutants suggested a relationship between the rigidity of the peptide structure and the gallium-binding properties.
In isothermal titration experiments, the thermodynamics of the interaction between gallium and the peptides as chemically synthesized derivatives were characterized, independent of the bacteriophage. The peptides differed strongly in their interaction with gallium, and in some cases, the complex formation with gallium depended strongly on the surrounding buffer conditions.
The peptide with the amino acid sequence NYLPHQSSSPSR has particularly promising gallium-binding properties. Computer modeling suggests the probable structure of the peptide in aqueous solution and postulates a possible binding site for gallium.
The side-selective and covalent immobilization of the peptides on a polystyrene matrix led to the creation of a biocomposite for the biosorptive recovery of gallium. The sorption performance and desorbability of the peptide-based biosorption materials were determined in studies with model solutions and real waters from the semiconductor industry.

Keywords: Phage Surface Display; Gallium; Wastewater treatment; Peptides

  • Doctoral thesis
    TUBAF, 2021
    Mentor: Dr. Katrin Pollmann
    0112 Seiten

Permalink: https://www.hzdr.de/publications/Publ-32444