Low Carbon Footprint Recycling of Post-Consumer PET Plastic with a Metagenomic Polyester Hydrolase


Low Carbon Footprint Recycling of Post-Consumer PET Plastic with a Metagenomic Polyester Hydrolase

Sonnendecker, C.; Oeser, J.; Richter, P. K.; Hille, P.; Zhao, Z.; Fischer, C.; Lippold, H.; Blázquez-Sánchez, P.; Engelberger, F.; Ramírez-Sarmiento, C. A.; Oeser, T.; Lihanova, Y.; Frank, R.; Jahnke, H.-G.; Billig, S.; Abel, B.; Sträter, N.; Matysik, J.; Zimmermann, W.

Our planet is flooded with plastics and the need for sustainable recycling strategies of polymers has become increasingly urgent. Enzyme-based hydrolysis of post-consumer plastic is an emerging strategy for closed-loop recycling of polyethylene terephthalate (PET). The polyester hydrolase PHL7 isolated from a compost metagenome completely hydrolyzed amorphous PET films, releasing 91 mg of terephthalic acid per hour and mg of enzyme. Degradation rates of the PET film of 6.8 µm h-1 were monitored by vertical scanning interferometry. Structural analysis indicated the importance of leucine at position 210 for the extraordinarily high PET-hydrolyzing activity of PHL7. Within 24 h, 0.6 mgenzyme gPET -1 completely degraded post-consumer thermoform PET packaging in an aqueous buffer at 70°C without any energy-intensive pretreatments. Terephthalic acid recovered from the enzymatic hydrolysate was used to synthesize virgin PET, demonstrating the potential of polyester hydrolases as catalysts in sustainable PET recycling processes with a low carbon footprint.

Permalink: https://www.hzdr.de/publications/Publ-32641