Solution synthesis and dielectric properties of alumina thin films: understanding the role of the organic additive in film formation


Solution synthesis and dielectric properties of alumina thin films: understanding the role of the organic additive in film formation

Hoffmann, R. C.; Liedke, M. O.; Butterling, M.; Wagner, A.; Trouilletc, V.; Schneider, J. J.

Alumina thin films are synthesized by combustion synthesis of mixtures of aluminium nitrate (ALN) and methylcarbazate (MCZ). The interdependence of the ratio of oxidizer and reducing agent on composition, microstructure and electronic properties of the resulting oxide layers is investigated. The dielectric and insulating behaviour is improved by addition of different amounts of MCZ (MCZ : ALN = 0.67 or 2.5). In this way films (thickness ∼140 nm) with a dielectric constant κ of 9.7 and a dielectric loss tan δ below 0.015 can be achieved. Medium concentrations of MCZ (MCZ : ALN = 1.0 or 1.5) lead to films with lower performance, though. Our studies indicate two opposing effects of the organic additive. Removal of organic residues during film formation as combustion gases is potentially detrimental. Larger amounts of MCZ, however, cause condensation reactions in the precusor mixture, which improve the microstructure. The porosity of the films can be sucessfully analyzed by positron annihilation liftetime studies. In this way the impact of the organic ligand sphere on the resulting microstructure can be quantified. Samples prepared from ALN alone exhibit mesopores and also larger micropores. In contrast, the formation of mesopores can be inhibited by addition of MCZ.

Keywords: alumina; thin films; Al2O3; positron annihilation spectroscopy; combustion synthesis; dielectrics; insulator

Involved research facilities

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-32731