Stress-induced modification of gyration dynamics in stacked double-vortex structures studied by micromagnetic simulations


Stress-induced modification of gyration dynamics in stacked double-vortex structures studied by micromagnetic simulations

Iurchuk, V.; Körber, L.; Deac, A. M.; Faßbender, J.; Lindner, J.; Kakay, A.

In this paper, using micromagnetic simulations, we investigate the stress-induced frequency tunability of double-vortex nano-oscillators comprising magnetostrictive and non-magnetostrictive ferromagnetic layers separated vertically by a non-magnetic spacer. We show that the relative orientations of the vortex core polarities p1 and p2 have a strong impact on the eigen-frequencies of the dynamic modes. When the two vortices with antiparallel polarities have different eigen-frequencies and the magnetostatic coupling between them is sufficiently strong, the stress-induced magnetoelastic anisotropy can lead to the single-frequency resonant gyration mode of the two vortex cores. Additionally, for the case of parallel polarities, we demonstrate that for sufficiently strong magnetostatic coupling, the magnetoelastic anisotropy leads to the coupled vortex gyration in the chaotic regime and to the lateral separation of the vortex core trajectories. These findings offer a path for achieving a fine control over gyration frequencies and trajectories in vortex-based oscillators via adjustable elastic stress, which can be easily generated and tuned electrically, mechanically or optically.

Keywords: Magnetic vortex; Magnetization dynamics; Magnetoelastic anisotropy; Micromagnetic modelling

Permalink: https://www.hzdr.de/publications/Publ-33127