Fe-60 and Mn-53: The Radionuclide System to Study Meteorites, the Solar Neighborhood and Past Supernova Activity


Fe-60 and Mn-53: The Radionuclide System to Study Meteorites, the Solar Neighborhood and Past Supernova Activity

Koll, D.; Faestermann, T.; Korschinek, G.; Ingo, L.; Merchel, S.; Wallner, A.

Astrophysical studies on extraterrestrial samples often involve long-lived radionuclides to study the evolution
of the solar system and the galaxy on long timescales. Dyadic radionuclide/stable nuclide systems such as
U-Pb, Sm-Nd or Rb-Sr are well-established and widely used for dating and characterization of meteorites and
lunar rocks. Such systems rely on the decay of a long-lived radionuclide and the resulting isotopic anomalies
of the daughter isotope compared to natural abundances.
In contrast, in this talk, the two live radionuclides Fe-60 and Mn-53 are shown to be versatile tools to study
meteorites and past supernova activity. Both radionuclides with half-lives around 3 Myr are produced in massive
stars as well as by spallation in extraterrestrial materials, planetary surfaces and cosmic dust. Measured
and modelled production rates [1,2] and the first use as a dyadic system to disentangle the origin of supernovaproduced
Fe-60 on the surface of the moon [3] and in Antarctic snow [4] will be presented amongst recent
discoveries of the individual radionucides in geological archives.

[1] Leya et al., Meteoritics & Planetary Science 55, 818–831 (2020)
[2] Merchel et al., Nucl. Instr. Meth. Phys. Res. B 172, 806-811 (2000)
[3] Fimiani et al., Phys. Rev. Lett. 116, 151104 (2016)
[4] Koll et al., Phys. Rev. Lett. 123, 072701 (2019)

Keywords: Meteorites; 60Fe; 53Mn; Supernova; Interstellar; Interplanetary

  • Poster (Online presentation)
    The 16th International Symposium on Nuclei in the Cosmos, 21.09.2021, Chengdu, China

Permalink: https://www.hzdr.de/publications/Publ-33499