Environment-induced decay dynamics of anti-ferromagnetic order in the Mott-Hubbard system


Environment-induced decay dynamics of anti-ferromagnetic order in the Mott-Hubbard system

Schaller, G.; Queisser, F.; Szpak, N.; König, J.; Schützhold, R.

We study the dissipative Fermi-Hubbard model in the limit of weak tunneling and strong repulsive interactions, where each lattice site is tunnel-coupled to a Markovian fermionic bath. For cold baths at intermediate chemical potentials, the Mott insulator property remains stable and we find a fast relaxation of the particle number towards half filling. On longer time scales, we find that the anti-ferromagnetic order of the Mott-Néel ground state on bi-partite lattices decays, even at zero temperature. For zero and non-zero temperatures, we quantify the different relaxation time scales by means of waiting time distributions which can be derived from an effective (non-Hermitian) Hamiltonian and obtain fully analytic expressions for the Fermi-Hubbard model on a tetramer ring.

Keywords: Fermi-Hubbard model; local master equation; magnetic order; waiting-time distributions

Downloads

Permalink: https://www.hzdr.de/publications/Publ-33576