Spectral X-Ray Computed Micro Tomography: 3-Dimensional Chemical Imaging by Using a Pixelated Semiconductor Detector


Spectral X-Ray Computed Micro Tomography: 3-Dimensional Chemical Imaging by Using a Pixelated Semiconductor Detector

Sittner, J.; Merkulova, M.; Da Assuncao Godinho, J. R.; Renno, A.; Cnudde, V.; Boone, M.; de Schryver, T.; van Loo, D.; Roine, A.; Liipo, J.; Guy, B. M.

We present a new approach to 3-dimensional (3D) chemical imaging based on X-ray computed micro tomography (micro-CT), which enables the analysis of the internal elemental chemistry. The method uses a conventional laboratory-based micro-CT scanner (Tescan CoreTOM) equipped with a cadmium telluride (CdTe) semiconductor line detector (Tescan PolyDet). Based on the X-ray absorption spectra, elements in a sample can be distinguished by their specific K-edge energy. The capabilities and performance of this approach are illustrated with different experiments. We present results from various sample materials (e.g., pure element reference samples, mineral mixtures and rocks). Different pure elements and element oxides were measured to compare positions of the theoretical K-edge energy with the measured one. Furthermore, we show the results of a particle mixture with quartz as a low-absorbing matrix. Finally, samples of the Au-U Witwatersrand Supergroup demonstrate the possibilities this approach for geological samples. All results show that the method can distinguish elements with K-edges in the range of 25–160 keV. This corresponds to elements with Z > 48 (Cd). Moreover, the spectral information allows a distinction between materials, which show little to no X-ray attenuation variation in the reconstructed CT image.

  • Book chapter
    Jan S. Iwanczyk; Krzysztof Iniewski: Radiation Detection Systems - Medical Imaging, Industrial Testing and Security Applications, Boca Raton: CRC Press, 2021, 9781003218364, 1-28
    DOI: 10.1201/9781003218364

Permalink: https://www.hzdr.de/publications/Publ-33591