Strongly enhanced growth of high temperature superconducting films on an advanced metallic template


Strongly enhanced growth of high temperature superconducting films on an advanced metallic template

Khan, M. Z.; Rivasto, E.; Rijckaert, H.; Zhao, Y.; Liedke, M. O.; Butterling, M.; Wagner, A.; van Driesche, I.; Huhtinen, H.; Paturi, P.

We demonstrate a straightforward and easily applicable technique for growing the highly improved quality of artificially BaZrO3 doped YBa2Cu3O6+x films on a commercially used buffered metallic template by pulsed laser deposition. Our method relies on reducing the grain size of the target material, which completely prevents the transfer of the harmful grain boundaries or weak links from the substrate through the buffer layers on the deposited film. We have also observed a great improvement in the self-assembly of BaZrO3 dopants and the critical current density is increased in the high temperature range up to 40%. As an extra benefit, our method allows increasing the growth rate of the film by 25%. We have discussed the results comprehensively with the help of the Ginzburg-Landau theory and provided an universal quantitative model of the grain boundary transfer from the substrate to the deposited film. The presented technique can be considered as a groundbreaking advancement for the vastly growing coated conductor industry.

Keywords: YBCO; superconductor; doping; positron annihilation spectroscopy

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-33660