Immunotargeting of CD98hc for Elimination of Radioresistant Head and Nek Squamous Cell Carcinoma


Immunotargeting of CD98hc for Elimination of Radioresistant Head and Nek Squamous Cell Carcinoma

Köseer, A. S.; Arndt, C.; Feldmann, A.; Linge, A.; Bachmann, M.; Krause, M.; Dubrovska, A.

Majority of patients with head and neck squamous cell carcinomas (HNSCC) are diagnosed during the locally advanced (LA) stage and are given standard treatments such as primary radiochemotherapy (RCTx) or postoperative radiochemotherapy (PORT-C). Due to heterogenous tumor response, patients show various treatment outcomes. Our previous retrospective biomarker analyses showed that SLC3A2 is a promising biomarker for locoregional control (LRC) in LA HNSCC patients with HPV-negative tumors treated with primary RCTx or PORT-C, with increased LRC rates in patients with low SLC3A2 mRNA and its protein product CD98hc levels (1,2). The siRNA- and CRISPR-Cas9 mediated inhibition of CD98hc expression increased radiosensitivity of HNSCC cells. Hence, CD98hc is a promising target for radiosensitization of the HNSCC. One of the strategies for radiosensitization is targeted immunotherapy. However, Chimeric Antigen Receptor (CAR)-equipped T-cell therapy cannot be fully controlled. Therefore, the switchable Universal CAR (UniCAR) system was developed (3, 4) that is currently in phase I clinical trial (NCT04230265) (5). UniCAR T cell activity and specificity is controlled by the presence of target modules (TM) with short half-lives (3). We aim to define the clinical value of new treatment approaches by combining radio(chemo)therapy with CD98hc-targeted immunotherapy. We have used previously described radioresistant Cal33 HNSCC cells (2, 6). These tumor cells were co-cultured with UniCAR T cells in the presence or absence of a novel CD98 TM. Our data shows that CD98-redirected UniCAR T cells have the capability to induce cell lysis of radioresistant HNSCC cells in in vitro 3D culture. The most promising combination of therapeutic approach will be further tested in xenograft tumor models to evaluate the best performing combination of immunotherapy and radio(chemo)therapy. This system can be potentially used to approach the combination of the UniCAR system with radio(chemo)therapy for synergistic improvement of treatment efficacy of patients with metastatic radioresistant tumors.

  • Open Access Logo Lecture (Conference) (Online presentation)
    2nd International Conference “Cancer Metastasis”, 13.-17.12.2021, VIRTUAL, VIRTUAL

Permalink: https://www.hzdr.de/publications/Publ-33906