Microstructured layered targets for improved laser-induced x-ray backlighters


Microstructured layered targets for improved laser-induced x-ray backlighters

Sander, S.; Ebert, T.; Hartnagel, D.; Hesse, M.; Pan, X.; Schaumann, G.; Smid, M.; Falk, K.; Roth, M.

We present the usage of two-layer targets with laser-illuminated front-side microstructures for x-ray backlighter applications. The targets consisted of a silicon front layer and copper back side layer. The structured layer was irradiated by the 500-fs PHELIX laser with an intensity above 1020Wcm−2. The total emission and one-dimensional extent of the copper Kα x-ray emission as well as a wide spectral range between 7.9 and 9.0 keV were recorded with an array of crystal spectrometers. The measurements show that the front-side modifications of the silicon in the form of conical microstructures maintain the same peak brightness of the Kα emission as flat copper foils while suppressing the thermal emission background significantly. The observed Kα source sizes can be influenced by tilting the conical microstructures with respect to the laser axis. Overall, the recorded copper Kα photon yields were in the range of 1011sr−1, demonstrating the suitability of these targets for probing applications without subjecting the probed material to additional heating from thermal line emission.

Downloads

  • Secondary publication expected

Permalink: https://www.hzdr.de/publications/Publ-33915