Aufschlusszerkleinerung beim Recycling von Multi-Material-Strukturen: Experimentelle und numerische Untersuchungen


Aufschlusszerkleinerung beim Recycling von Multi-Material-Strukturen: Experimentelle und numerische Untersuchungen

Heibeck, M.; Richter, J.; Mütze, T.; Rudolph, M.; Hornig, A.; Modler, N.; Reuter, M.; Filippatos, A.

Eine zunehmende Anzahl von Gebrauchsgütern, von Fahrzeugen bis Haushaltsgerä-ten, besteht aus Multi-Material Strukturen. Sie enthalten Verbindungen zwischen un-terschiedlichen Materialien, die für Herstellung und Nutzungsphase eines Produktes wichtige Funktionen erfüllen, aber im Recycling meist wieder aufgeschlossen werden müssen, um hohe Recyclingraten für alle verbauten Materialien zu erzielen. Typi-scherweise erfolgt der Aufschluss von Materialien durch mechanische Zerkleine-rungsprozesse, bei denen die Recycler konstruktive und prozesstechnische Parame-ter auf vorliegende Strukturen und Materialverbindungen anpassen und optimieren. Für nachhaltige Recycling-Lösungen sind neben der Recyclingindustrie aber auch Produkthersteller bereits in der Konstruktionsphase mit einzubeziehen, da ihre Desig-nentscheidungen die Recyclingfähigkeit stark beeinflusst. Derzeit fehlen jedoch meist Methoden, um die Auswirkungen von Designentscheidungen auf das Aufschlussver-halten abzuschätzen.
Vor diesem Hintergrund wird im Rahmen des BMBF-Projekts Circular by Design un-tersucht, welche Parameter bereits während der Bauteilentwicklung beeinflussbar sind, um den Materialaufschluss bei der mechanischen Aufbereitung zu optimieren, ohne Funktion und Lebensdauer der Struktur in der Nutzungsphase zu beeinträchti-gen. Dazu wurden in einem Rotorreißer grundlegende Versuche an Prüfkörpern aus der Automobilbranche zum Einfluss verschiedener Verbindungscharakteristika auf das Aufschlussverhalten durchgeführt. Wegen der aufwändigen experimentellen Datener-hebung aufgrund hoher Parametervariabilität im Produktdesign und Zerkleinerungs-prozess wurde zudem mithilfe der Finiten Elemente Methode (FEM) ein physikalisch basiertes, numerisches Modell der Aufschlusszerkleinerung entwickelt.
Für die FEM-Modellierung wurde die Software LS-DYNA verwendet und Materialmo-delle, welche die Plastizität und das Versagen der beteiligten Werkstoffe sowie deren Kontaktstellen berücksichtigen. Die Simulation wurde für verschiedene Lastfälle durchgeführt, welche beispielsweise unterschiedliche Orientierungen des Prüfkörpers im Rotorreißer abbilden. Im vorliegenden Beitrag werden experimentelle und erste numerische Ergebnisse am Beispiel einer Metall-Kunststoff-Hybridstruktur vorgestellt.

  • Poster (Online presentation)
    Jahrestreffen der ProcessNet-Fachgruppen Mehrphasenströmungen, Mechanische Flüssigkeitsabtrennung sowie Zerkleinern und Klassieren, 21.-22.02.2022, online, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-33936