Beitrag zur Abschätzung der Recyclingfähigkeit von Multi-Material-Strukturen: Numerische Modellierung der Aufschlusszerkleinerung


Beitrag zur Abschätzung der Recyclingfähigkeit von Multi-Material-Strukturen: Numerische Modellierung der Aufschlusszerkleinerung

Heibeck, M.; Richter, J.; Mütze, T.; Rudolph, M.; Hornig, A.; Modler, N.; Reuter, M.; Filippatos, A.

Hintergrund: Eine zunehmende Anzahl von Produkten von Fahrzeugen bis Haushaltsgeräten besteht aus Multi-Material Strukturen, die Verbindungen zwischen unterschiedlichen Werkstof-fen enthalten. Diese Verbindungen müssen im Recycling meist wieder aufgeschlossen wer-den, um hohe Recyclingraten für alle eingesetzten Werkstoffe zu erzielen. Typischerweise erfolgt der Aufschluss von Materialien durch mechanische Zerkleinerungsprozesse, bei denen die Recycler konstruktive und prozesstechnische Parameter auf vorliegende Strukturen und Materialverbindungen anpassen und optimieren. Für nachhaltige Recycling-Lösungen sind neben der Recyclingindustrie aber auch Produkthersteller bereits in der Konstruktionsphase mit einzubeziehen, da ihre Designentscheidungen die Recyclingfähigkeit stark beeinflusst. Derzeit fehlen jedoch meist Methoden, um die Auswirkungen von Designentscheidungen auf das Aufschlussverhalten abzuschätzen. Die Finite Elemente Analyse könnte eine vielverspre-chende Lösung sein.
Fragestellung: Welche Möglichkeiten und Grenzen gibt es derzeit bei der Anwendung der Finiten Elemente Methode zur Untersuchung der Aufschlusszerkleinerung von Multi-Material-Strukturen?
Methodik & Durchführung: Mithilfe der Finiten Elemente (FE) Methode wurde ein physika-lisch basiertes, numerisches Modell der Aufschlusszerkleinerung entwickelt. Das Modell wur-de für die Zerkleinerung von Prüfkörpern aus der Automobilbranche (Metall-Kunststoff-Verbünde) in einem Rotorreißer eingesetzt. Für die FE-Modellierung wurde die Software LS-DYNA verwendet und Materialmodelle, welche die Plastizität und das Versagen der beteilig-ten Werkstoffe sowie deren Kontaktstellen berücksichtigen. Die Simulation wurde für ver-schiedene Lastfälle durchgeführt, die aus unterschiedlichen Orientierungen des Prüfkörpers im Rotorreißers resultieren. Numerische Ergebnisse wurden mit experimentellen Ergebnissen grundlegender Zerkleinerungsversuche verglichen.
Ergebnisse: Erste Ergebnisse zeigen eine hohe Übereinstimmung zwischen experimentellen und numerischen Ergebnissen im Bereich des plastischen Verformungsverhaltens duktiler Werkstoffe sowie beim Versagensverhalten.
Wissenschaftlicher Beitrag: Die Finite Elemente Methode ist ein gängiges Tool in der Kon-struktionsphase von Produkten, um z. B. das Strukturverhalten in verschiedenen Belastungssi-tuationen abschätzen zu können. Neuwertig ist die Anwendung der FE Methode zur Modellie-rung des Zerkleinerungsprozesses beim Recycling von Multi-Material-Strukturen. Die Methode leistet einen Beitrag dazu, dass Konstrukteure zukünftig schon im Designstadium das Auf-schlussverhalten und die Recyclingfähigkeit von Produkten abschätzen können.

  • Lecture (Conference)
    11. DGAW-Wissenschaftskongress "Abfall- und Ressourcenwirtschaft", 17.-18.03.2022, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-33937