Enabling materials design of ionic systems with automated corrections: AFLOW-CCE


Enabling materials design of ionic systems with automated corrections: AFLOW-CCE

Friedrich, R.; Esters, M.; Oses, C.; Ki, S.; Brenner, M. J.; Hicks, D.; Mehl, M. J.; Ghorbani-Asl, M.; Krasheninnikov, A.; Toher, C.; Curtarolo, S.

Materials databases such as AFLOW [1] leverage ab initio calculations
for autonomous materials design. The predictive power critically relies
on accurate formation enthalpies - quantifying the thermodynamic
stability of a system. For ionic materials such as oxides and nitrides,
standard DFT leads to errors of several hundred meV/atom [2,3].
We have recently developed the "coordination corrected enthalpies"
(CCE) method yielding highly accurate room temperature formation
enthalpies with mean absolute errors down to 27 meV/atom [3]. Here,
we introduce AFLOW-CCE [4]: a tool where users can input a structure
file and receive the CCE corrections, or even the CCE formation
enthalpies if pre-calculated LDA, PBE or SCAN values are provided.
The results can be used for the design of e.g. 2D materials.
[1] S. Curtarolo et al., Comput. Mater. Sci. 58, 218 (2012).
[2] V. Stevanović et al., Phys. Rev. B 85, 115104 (2012).
[3] R. Friedrich et al., npj Comput. Mater. 5, 59 (2019).
[4] R. Friedrich et al., Phys. Rev. Mater. 5, 043803 (2021).

Involved research facilities

Related publications

  • Lecture (Conference) (Online presentation)
    DPG-Frühjahrstagung SKM 2021, 27.09.-01.10.2021, Online, Online

Permalink: https://www.hzdr.de/publications/Publ-33997