Flash lamp annealing for thin film processing


Flash lamp annealing for thin film processing

Rebohle, L.; Begeza, V.; Cherkouk, C.; Neubert, M.; Prucnal, S.; Hübner, R.; Zhou, S.

Flash lamp annealing is, like laser annealing, a non-equilibrium annealing method on the sub-second time scale which excellently meets the requirements of thin film processing: it allows the use of temperature-sensible substrates for thin films, leads to energy and cost savings compared to long-time annealing methods, and enables the formation of new materials in thermal non-equilibrium. Originally developed for microelectronics, flash lamp annealing has opened up new areas of application like thin films on glass, sensors, printed electronics, flexible electronics, batteries etc.

In this presentation, we shortly compare the pros and cons of flash lamp and laser annealing for thin film processing and discuss these issues at the example of thin semiconductor films on glass. In detail, the crystallization of amorphous Si on borosilicate glass, the crystallization of amorphous Ge on SiO2/Si substrates, and the formation of NiGe on different Ge substrates (amorphous, polycrystalline and monocrystalline) have been investigated. In all cases, the thin films were deposited by magnetron sputtering, followed by flash lamp annealing. The evolution of microstructure and its electrical properties was traced by corresponding characterization methods such as Raman spectroscopy, transmission electron microscopy, atomic force microscopy, X-ray diffraction, sheet resistance and Hall effect measurements.

Keywords: flash lamp annealing; thin film; crystallization amorphous Ge; NiGe

Involved research facilities

Related publications

  • Lecture (Conference) (Online presentation)
    E-MRS Spring 2021, Symposium H, 31.05.-03.06.2021, Strasbourg, France

Permalink: https://www.hzdr.de/publications/Publ-34161