Quantifying the Dzyaloshinkii-Moriya Interaction Induced by the Bulk Magnetic Asymmetry


Quantifying the Dzyaloshinkii-Moriya Interaction Induced by the Bulk Magnetic Asymmetry

Zhang, Q.; Liang, J.; Bi, K.; Zhao, L.; Bai, H.; Cui, Q.; Zhou, H.-A.; Bai, H.; Feng, H.; Song, W.; Chai, G.; Gladii, O.; Schultheiß, H.; Zhu, T.; Zhang, J.; Peng, Y.; Yang, H.; Jiang, W.

A broken interfacial inversion symmetry in ultrathin ferromagnet/heavy metal (FM/HM) bilayers is generally believed to be a prerequisite for accommodating Dzyaloshinskii-Moriya interaction (DMI) and for stabilizing chiral spin textures. By contrast, we present an approach for engineering both the sign and amplitude of DMI in relatively thick films without involving interfacial asymmetry, which is achieved through incorporating the composition gradient-induced bulk magnetic asymmetry (BMA) combined with strong spin-orbit coupling (SOC). The pivotal roles of BMA and SOC are theoretically examined based on the three-site Fert-Lévy model and the first principles calculations. Experimentally, both the sign and amplitude of DMI in films with controllable composition gradients along the growth direction, in the presence/absence of SOC are studied by using a Brillouin light scattering spectroscopy. Our results suggest that the appreciable value of DMI (±0.15 mJ/m2) could be established through combining BMA and SOC into relatively thick films. It is expected that our findings may help to further understand chiral magnetism and to design novel non-collinear spin textures.

Keywords: Dzyaloshinskii-Moriya interaction; Brillouin light scattering; spin-wave non-reciprocity; bulk magnetic asymmetry; spin-orbit coupling

Downloads

Permalink: https://www.hzdr.de/publications/Publ-34283