Random Quantum Neural Networks (RQNN) for Noisy Image Recognition


Random Quantum Neural Networks (RQNN) for Noisy Image Recognition

Konar, D.; Gelenbe, E.; Bhandary, S.; Das Sarma, A.; Cangi, A.

Classical Random Neural Networks (RNNs) have demonstrated effective applications in decision making, signal processing, and image recognition tasks. However, their implementation has been limited to deterministic digital systems that output probability distributions in lieu of stochastic behaviors of random spiking signals. We introduce the novel class of supervised Random Quantum Neural Networks (RQNNs) with a robust training strategy to better exploit the random nature of the spiking RNN. The proposed RQNN employs hybrid classical-quantum algorithms with superposition state and amplitude encoding features, inspired by quantum information theory and the brain’s spatial-temporal stochastic spiking property of neuron information encoding. We have extensively validated our proposed RQNN model, relying on hybrid classical-quantum algorithms via the PennyLane Quantum simulator with a limited number of qubits. Experiments on the MNIST, FashionMNIST, and KMNIST datasets demonstrate that the proposed RQNN model achieves an average classification accuracy of 94.9%. Additionally, the experimental findings illustrate the proposed RQNN’s effectiveness and resilience in noisy settings, with enhanced image classification accuracy when compared to the classical counterparts (RNNs), classical Spiking Neural Networks (SNNs), and the classical convolutional neural network (AlexNet). Furthermore, the RQNN can deal with noise, which is useful for various applications, including computer vision in NISQ devices. The PyTorch code is made available on GitHub to reproduce the results reported in this manuscript.

Keywords: machine learning; neural networks; quantum computing; image recognition

Permalink: https://www.hzdr.de/publications/Publ-34383